IIT Mandi

Course Name Course Number	: Quantum Optics : QT 511
Credits	: 3-0-0-3
Prerequisites	: Engineering Mathematics (Linear Algebra, Complex algebra, basics of 2 nd of ODEs and initial value problems, 2 nd order PDEs and boundary value problems, Probability and Statistics, Random variables). Maxwell's equations and EM theory at the level of the core physics syllabus from AICTE model
Curriculum Intended for	: UG/PG/PhD
Distribution	: Elective PG/Elective UG
Semester	: Odd/Even

Preamble: Students of this course learn (i) To quantise the electromagnetic field, (ii) The various experimental techniques in photonics, (iii) The various representations of states of light, (iv) Classical, semi-classical and fully quantum models of light-matter interaction, (v) Modelling decoherence through Master equation

Course Content and syllabus:

- Quantization of the electromagnetic field
 - Number states, coherent states, squeezed states
 - Hanbury-Brown and Twiss experiments Photon bunching, Photon anti bunching
 - Hong-Ou-Mandel interference
- Theory of Optical coherence
 - Young's double slit experiment and first order coherence
 - Coherence functions of arbitrary order
 - Normal ordering, symmetric ordering and ani-normal ordering of operators
 - Interferometry
- Phase-space representations of states of light
 - Wigner distribution
 - P-function and the notion of non-classicality with some examples of nonclassical states like squeezed states and their applications
 - Husimi Q function
- Light-matter interaction
 - Classical model of light-matter interaction
 - Semi-classical model of light-matter interaction-
 - Quantum light-matter interaction
 - Rabi Model
 - Jayne's-cummings model
- Open quantum systems
 - Fermi golden rule
 - Born-Markov Lindblad Master Equation

Course Outcomes:

Students of this course learn

- 1. To quantise the electromagnetic field
- 2. The various experimental techniques in photonics
- 3. The various representations of states of light
- 4. Classical, semi-classical and fully quantum models of light-matter interaction
- 5. Modelling decoherence through Master equation

Course References:

- 1. Introductory Quantum Optics, Christopher Gerry and Peter Knight, Cambridge University Press (2004)
- 2. Quantum Optics, D. F. Walls, Gerard J. Milburn, 2nd Edition, Springer (2008)
- 3. Quantum Optics: An introduction, Mark Fox, Oxford University Publishers (2006)
- Quantum Optics for Beginners, Z. Ficek and M. R. Wahiddin, 1st edition, Jenny Stanford Publishing (2014)